SULFATED AND NON-SULFATED FLAVONOIDS FROM PLUCHEA DIOSCORIDIS

AHMED A. AHMED,* F.R. MELEK,

Department of Chemistry, Faculty of Science, El-Minia University, El-Minia and National Research Centre, Dokki Cairo, Egypt

and TOM J. MABRY

Department of Botany, University of Texas at Austin, Texas 78713

Pluchea dioscoridis (L.) DC. [syn. Conyza dioscoridis (L.) Desf.] (Compositae) (1), yielded four sulfated flavonoids, one of which was characterized for the first time, and four non-sulfated flavonoids. The sulfated flavonoils were identified as the 3,7-disulfates of quercetin, isorhamnetin, and kaempferol and the 3-sulfate of isorhamnetin; the four non-sulfated flavonoids are kaempferol 3-rutinoside, quercetin 3-rutinoside, quercetin-3-O-β-D-glucoside, and apigenin-6,8-di-C-glucoside. Conyza stricta, Conyza aegyptiaca, Conyza bonatiensis (2), and Conyza ivaefolia (3) contain non-sulfated flavonoids, while P. dioscoridis contains the sulfated flavonoids.

Quercetin 3,7-disulfate, previously unreported, gave quercetin and sulfate (confirmed by BaCl₂ precipitation) on acid hydrolysis. The linkages of sulfate moieties to the 3 and 7 positions were established from the uv data, λ max (nm) in MeOH, 250, 270 sh, 350; NaOMe, 270, 415 with increase in intensity; NaOAc, 252, 370, 420 sh; $+H_3BO_3$, 259, 380; AlCl₃, 275, 330 sh, 430; +HCl, 280, 365 sh, 390. Controlled acid hydrolysis produced two intermediates, quercetin 3-sulfate and quercetin 7-sulfate, as well as quercetin. The identity of the intermediates was confirmed by electrophoretic and uv data. Electrophoretic data of the isolated compounds are in agreement with those reported for disulfates (4-6). The negative fabras showed $\{M-H\}^-$ at m/z 505 $(C_{15}H_8O_{13}S_2Na_2)$ indicative of two sulfate moieties with Na⁺ counter ions. Moreover, $\{M-Na\}^-$ was also observed at m/z 484.

EXPERIMENTAL

PLANT MATERIAL.—P. dioscoridis was collected near the El-Minia University campus in March 1985. The plant material was identified by Prof. M.N. El-Hadidi, Department of Botany, Cairo University. A voucher specimen is deposited in the Department of Botany, El-Minia University.

EXTRACTION, ISOLATION AND IDENTIFICATION OF FLAVONOIDS.—Dried aerial parts of *P. dioscoridis* (200 g) were extracted three times with 30% aqueous MeOH, and the concentrated syrup was chromatographed over a polyamide column eluted with H₂O and then with increasing amounts of MeOH. The H₂O fraction yielded three components of Whatmann 3mm chromatography paper developed for 72 h in *n*-BuOH-HOAc-H₂O (4:1:1). The resulting bands yielded the 3,7-disulfates of quercetin, isorhamnetin, and kaempferol. The 30% MeOH fraction afforded quercetin and kaempferol 3-rutinosides and apigenin-6,8-di-*C*-glucoside, while the 50% MeOH fraction contained quercetin 3-O-β-D-glucoside. All compounds were purified over Sephedex LH-20 prior to spectral analysis by uv and ¹H nmr (DMSO-d₆, 60 MHz); the identity of apigenin 6,8-di-*C*-glucoside was confirmed by comparison with an authentic sample (7). The glycosides were hydrolyzed to their respective aglycones and sugars, all of which were identified by authentic sample comparisons.

ACKNOWLEDGMENTS

The work in Egypt was supported by the Faculty of Science, El-Minia University and the National Research Centre, Cairo; T.J.M acknowledges support from the National Science Foundation (BSR-8402017) and the Robert A. Welch Foundation (F-130).

LITERATURE CITED

- 1. J.B. Heywood, J.B. Harborne, and B.L. Turner, "The Biology and Chemistry of the Compositae," Academic Press, New York, 1977, p. 579.
- 2. Z.A.R. EL-Karemy, "Chemosystematics Studies of Some Genera of the Compositae in Egypt," Ph. D., Dissertation, Department of Botany, Faculty of Science, Assiut, Egypt, 1986.
- 3. F. Bohlmann and R. Grenz, Chem. Ber., 105, 3123 (1972).
- J.L. Cabrera and H.R. Juliani, J. Nat. Prod., 39, 235 (1975).
- J.L. Cabrera and H.R. Juliani, Phytochemistry, 18, 510 (1978).
- 6. J.L. Cabrera, H.R. Juliani, and E.G. Gros, Phytochemistry, 24, 1394 (1985).
- T.J. Mabry, K.R. Markham, and M.B. Thomas, "The Systematic Identification of Flavonoids," Springer-Verlag, New York, 1970.